Для чего нужен конденсатор в холодильнике

Как работает конденсаторный электродвигатель и для чего он нужен

В современном оборудовании используется несколько разные виды электродвигателей. Разные по конструкции, характеристиками и принципу работы все эти двигатели подбираются для каждого конкретного случая по своим параметрам.

Вместе с тем, довольно часто в приборах и оборудовании необходимы электродвигатели с возможностью подключения к однофазной сети.

Одним из подходящих вариантов выступает конденсаторный электродвигатель, устройство и принцип работы которого мы рассмотрим в пределах данной статьи.

Устройство и принцип работы

Говоря о конденсаторных асинхронных двигателях, речь в первую очередь будет идти об электромоторах, изначально рассчитанных для подключения к однофазной сети.

Это несколько перекликается с двухфазными или трехфазными двигателями, переделанными для подключения в обычную однофазную сеть на 220 Вольт.

Но существенным отличием этих электродвигателей выступает то, что здесь конденсатор выступает как обязательное условие электрической схемы и включение в трёхфазную сеть 380 Вольт такого асинхронного двигателя просто невозможно.

Устройство и принцип работы конденсаторного двигателя основаны на физических свойствах асинхронного двигателя, но для создания движущей силы и вращения магнитного поля в цепь обмоток включен пусковой конденсатор.

По своему устройству он не отличается от обычного асинхронника и в составе имеет:

  1. Неподвижный статор в массивном корпусе с рабочей и пусковой обмотками.
  2. Закрепленный на валу ротор, приводимый в движение силой электромагнитного поля, создаваемого обмотками статора.

Обе части электродвигателя соединены между собой на подшипниках качения или скольжения (втулки), закрепленных в крышках корпуса статора.

По принципу работы конденсаторный электродвигатель, как отмечалось выше, относится к асинхронным – движение осуществляется за счет создания электромагнитного поля обмотками статора, сдвинутыми относительно друг друга на 90 градусов. Единственное отличие от трехфазных асинхронных электродвигателей заключается во включенном в цепь конденсаторе, через который включаются вторая обмотка электродвигателя.

Обычный асинхронный двигатель при включении в сеть начинает работу с пусковой обмоткой. После того как ротор набрал обороты, пусковая обмотка отключается и работу продолжает только рабочая обмотка. Минусом такого электромотора с пусковой обмоткой выступает момент пуска, когда ротор начинает набор оборотов. Для электродвигателя важно чтобы в этот момент не было нагрузки, или нагрузка была небольшой. Пусковой момент получается ниже, чем у аналогичных по мощности трёхфазных моторов.

В схеме подключения конденсаторного асинхронного двигателя есть фазосдвигающий конденсатор. При подключении в сеть через конденсатор во второй обмотке возникает сдвиг фаз, равный 90 градусам (на практике немного меньше). Это способствует тому, что в работу ротор включается с максимально возможным крутящим моментом.

Такой запуск обеспечивает включение двигателя как на холостом ходу, так и под нагрузкой. Это очень важно для подключения двигателя под нагрузкой. На практике по такой схеме подключается мотор от стиральной машины старых моделей. В момент пуска двигатель должен начать вращать воду в баке, а это существенная нагрузка на электродвигатель. При отсутствии пускового конденсатора двигатель не будет запускаться, он будет гудеть, греться, но работать не будет.

Виды конденсаторных двигателей

Схема подключения, при которой конденсаторный асинхронный двигатель запускается только от пускового конденсатора, имеет один существенный минус. Во время работы магнитное поле не остается круговым или эллиптическим, показатели работы падают, а электродвигатель греется. В таком случае для оптимального режима в цепь включается рабочий конденсатор, обеспечивающий постоянный сдвиг фаз, а не только в момент пуска.

Отметим, что можно выделить две группы конденсаторных двигателей:

  1. Конденсатор нужен только для пуска, тогда его называют пусковым. Обычно это маломощные приборы.
  2. Конденсатор нужен для постоянной работы, в этом случае его называют рабочим. В машинах большой мощности (несколько кВт) для пуска под нагрузкой может не хватать момента, и тогда подключают дополнительно еще один пусковой конденсатор. Чаще всего это делают с помощью кнопки ПНВС.

Подробнее со схемой подключения и тем как отличить эти типы однофазных двигателей вы можете ознакомиться в следующем видео ролике:

В международной классификации применяются обозначения для типов конденсаторных асинхронных двигателей:

  • двигатель с пуском через конденсатор/работа через обмотку (индуктивность) (CSIR);
  • двигатель с пуском через конденсатор/работа через конденсатор (CSCR);

Источник: https://samelectrik.ru/kondensatornyj-elektrodvigatel.html

Для чего нужен конденсатор в холодильнике

Трудно представить себе современную квартиру без холодильника. Все знают, что холодильник сохраняет холод внутри себя, поэтому продукты, хранящиеся в нем, не портятся долгое время. Как же устроен холодильник?

В холодильнике 4 основных составляющих части:

1. Хладагент — вещество, которое ходит по кругу и переносит тепло.В качестве хладагента используется газ фреон.

2. Компрессор — мотор, который работает по принципу насоса и гонит хладагент по кругу.

3. Конденсатор — через него тепло уходит наружу, в окружающую среду. Конденсатор — это решетка на задней стенке холодильника.

4. Испаритель — в нем тепло забирается из холодильника. Обычно испарителем служит внутренняя стенка холодильника

Основные части бытового холодильника:
1 — испаритель, 2 — конденсатор, 3 — фильтр-осушитель, 4 — капилляр, 5 — компрессор

Компрессор засасывает хладагент из испарителя. Хладагент в этот момент находится в состоянии пара. Компрессор под давлением закачивает его в конденсатор. Хладагент под давлением сжимается, то есть из газообразного состояния переходит в жидкое. При этом его температура повышается. Горячий газ, проходя по трубам конденсатора, отдает тепло в окружающее пространство и в результате остывает до комнатной температуры.

Затем через очень узкое отверстие (капилляр) хладагент поступает в испаритель. Его давление резко уменьшается, и за счет этого происходит испарение хладагента — он вскипает, превращаясь в пар. При этом он сильно охлаждается. В результате он отнимает тепло у стенок испарителя, а испаритель, в свою очередь, охлаждает внутреннее пространство холодильника и продукты, содержащиеся в нем.

Таким образом, хладагент работает по циклу: в конденсаторе он под воздействием высокого давления конденсируется и переходит в жидкое состояние, выделяя тепло, а в испарителе под воздействием низкого давления вскипает и переходит в газообразное состояние, поглощая тепло.

Схема работы компрессионного холодильника
1 — конденсатор, 2 — капилляр, 3 — испаритель, 4 — компрессор

Холодильник обязательно имеет терморегулятор, с помощью которого задается температура охлаждения холодильной камеры. Когда эта температура достигается, терморегулятор размыкает электрическую цепь, и компрессор останавливается.

Через некоторое время температура в холодильнике начинает снова повышаться (под воздействием окружающей среды). Тогда контакты терморегулятора замыкаются и электродвигатель мотор-компрессора запускается с помощью защитно-пускового реле. Весь цикл повторяется сначала, пока температура в холодильнике снова не понизится до нужного значения.

Вот почему мы слышим, как холодильник время от времени начинает «урчать», а потом снова затихает — это включается и выключается электродвигатель компрессора.

В схеме циркуляции хладагента на самом первом рисунке вы, наверно, заметили еще одно звено — фильтр-осушитель. Он нужен для очистки и осушения хладагента, который проходит через него. Фильтр-осушитель представляет собой цилиндр, заполненный веществом, поглощающим влагу (силикагель или цеолит).

Итак, холодильник устроен таким образом, что он не охлаждает воздух в камере, а забирает из него тепло и отдает его в окружающую среду. Обеспечивается это разницей давления в конденсаторе и испарителе холодильника. Хладагент идет от участка с высоким давлением, где он обращается в жидкость (конденсируется), к участку с низким давлением, где давление хладагента понижается и он превращается в пар (испаряется).

Домашний уют современного человека невозможно представить без холодильника. Он предназначен для длительного хранения продуктов. По подсчетам ученых, каждый член семьи открывает дверцу до 40 раз в сутки. Мы заглядываем вовнутрь даже не задумываясь, как работает наш холодильник.

В нашей статье мы подробно рассмотрим устройство и принцип действия различных холодильников.

Как устроен холодильник

Любой современный холодильник состоит из следующих основных агрегатов:

  1. Двигатель.
  2. Конденсатор.
  3. Испаритель.
  4. Капиллярная трубка.
  5. Осушительный фильтр.
  6. Докипатель.

Схема работы холодильника

Электродвигатель

Двигатель является основным узлом бытового прибора. Предназначен для циркуляции охлаждающей жидкости (фреона) по трубкам.

Двигатель состоит из двух агрегатов:

Электромотор преобразует электрический ток в механическую энергию. Агрегат состоит из двух частей – ротора и статора.

Корпус статора устроен из нескольких медных катушек. Ротор имеет вид стального вала. Ротор соединен с поршневой системой двигателя.

При подключении двигателя к сети питания в катушках возникает электромагнитная индукция. Она является причиной возникновения крутящего момента. Центробежная сила приводит ротор во вращательное движение.

А знаете ли Вы, что на долю холодильника приходится 10 % всей потребленной электроэнергии. Открытая дверца прибора увеличивает потребление электричества в несколько раз.

При вращении ротора двигателя происходит линейное перемещение поршня. Передняя стенка поршня сжимает и разряжает рабочую жидкость до рабочего состояния.

Положение двигателя холодильника

В современных охлаждающих установках электродвигатель находится внутри компрессора. Такое расположение преграждает газу путь для самопроизвольной утечки.

Для уменьшения вибраций двигатель находится на пружинистой металлической подвеске. Пружина может находится снаружи или внутри устройства. В современных агрегатах пружина находится внутри корпуса двигателя. Это позволяет эффективно гасить вибрации при работе аппарата.

Конденсатор

Представляет собой змеевидный трубопровод диаметром до 5 миллиметров. Предназначен для отвода тепла от рабочей жидкости в окружающую среду. Конденсатор располагается на задней наружной поверхности прибора.

Испаритель

Представляет систему тонких трубок. Предназначен для испарения рабочей жидкости и охлаждения окружающего пространства. Располагается внутри или снаружи морозильника.

Капиллярная трубка

Предназначена для снижения давления газа. Имеет диаметр от 1,5 до 3 миллиметров. Расположена на участке между испарителем и конденсатором.

Источник: https://automotocity.com/avtovaz/dlja-chego-nuzhen-kondensator-v-holodilnike.html

Мойка холодильного шкафа Полаир

Содержать в чистом виде конденсатор холодильного шкафа Полаир очень важно. Конденсатор служит для снятия тепла от хладагента. Для увеличения КПД снятия тепла за конденсатором располагают вентилятор. Он прогоняет воздух через конденсатор и усиливает передачу тепла воздуху окружающей среды.

К сожалению, воздух, прогоняемый через конденсатор загрязняет/ забивает его пылью, а в случае, когда холодильный шкаф Полаир стоит на кухне вблизи тепловых плит, к пыли добавляется еще и жир.

В связи с этим очень важно проводить регулярную чистку и мойку с использованием химических средств. В зависимости от загрузки Вашего предприятия мойку можно проводить ежемесячно, ежеквартально или раз в полгода.

В результате мойки конденсатора холодильника Полаир с использованием химических средств и/или парогененаратором, уменьшается нагрузка на такой важный элемент любого холодильного оборудования, как компрессор. Вероятность выхода компрессора из строя или поломки компрессора значительно сокращается, что позволяет не попасть на дорогостоящий ремонт.

Состояние конденсатора и компрессора холодильного шкафа Полаир до мойки (почти чистый, что не типично)

Данный холодильник в очень хорошем состоянии, его покупали 1 год назад и стоял он в холодном цеху. Как видно на фотографиях, на компрессоре и конденсаторе холодильного шкафа Полаир почти отсутствует пыль, грязь и жир («сало»), что большая редкость (см. выше).

Состояние конденсатора и компрессора холодильного шкафа Полаир после мойки химическими средствами и/или парогенератором

Вся грязь и пыль, с небольшим количеством жира были убраны с поверхности площадки агрегата, с компрессора, вентилятора и конденсатора холодильного шкафа Polair.

Результат мойки холодильника Полаир

В результате мойки холодильника Полаир, его конденсатора и компрессора, как видно из фотографий, снизилась температура в холодильной камере с 4,3 градусов до 3,0 градусов.

Компания РСПро проведет техническое обслуживание и мойку морозильного шкафа POLAIR

Источник: https://www.r-s-pro.ru/servis_restorannogo_oborudovaniya/service_holod_oborudovania/to_holodilnih_shkafov/moika_holodilnogo_shkafa_polair/

Как устроен холодильник

Несмотря на высокую стоимость и ответственную «работу», холодильная техника имеет довольно простое устройство. Зачем Вам знать, как устроен холодильник? Да хотя бы затем, чтобы уметь правильно его использовать. Очень полезно понимать, что может привести к поломке агрегата, а что, наоборот, способно продлить срок его службы. Кроме того, зная общее устройство холодильника, Вы быстрее сориентируетесь при возникновении неисправностей и вовремя вызовете мастера.

Система охлаждения и принцип работы холодильной техники

Холодильники и морозильники всех марок работают по одному принципу. Охлаждающая система представляет собой замкнутое кольцо из тонких трубок:

  • Одна «рабочая» часть ее находится внутри, в камере холодильника, и называется испарителем. Испаритель спрятан «под обшивку» (так чаще бывает в холодильной камере) или уложен «змейкой» под полками (в морозилке).
  • Вторая часть системы расположена снаружи. Это конденсатор. Находится на задней стенке холодильника и выглядит как решетка или щит из тонких трубок.

И испаритель, и конденсатор в обычных бытовых холодильниках имеют форму змеевика. Это увеличивает площадь поверхности и позволяет им эффективнее поглощать тепло в камере и отдавать снаружи. Вся система заполнена хладагентом (как правило, это фреон). Он непрерывно циркулирует и постоянно меняет свое состояние, превращаясь то в газ, то в жидкость. Один цикл охлаждения состоит из двух основных этапов:

  1. Конденсация. При комнатной температуре фреон находится в газообразном состоянии. Но в конденсатор он накачивается под давлением и превращается из газа в жидкость (конденсируется). В процессе хладагент отдает тепло, то есть, на ощупь становится горячим. Проходя по длинным трубкам конденсатора, фреон охлаждается за счет окружающего воздуха и достигает комнатной температуры.
  2. Испарение. Далее хладагент течет в сторону испарителя. Но поступает в него не напрямую, а через капилляр – сильно суженный участок трубки. Когда фреон попадает в испаритель через такое узкое отверстие, его давление резко снижается. Из-за этого хладагент вскипает, переходя из жидкого состояния в газообразное (испаряется). В процессе испарения он поглощает огромное количество тепла, а на ощупь становится холодным. Проходя по трубкам испарителя, фреон «забирает» тепло из камеры, охлаждая воздух и продукты, находящиеся в ней.

Температура перехода из жидкого состояния в газообразное (точка кипения) у разных типов и марок хладагентов составляет -30-150 °С. Но количество фреона в системе и площадь поверхности испарителя сравнительно небольшие, а его циркуляция периодически прерывается. Поэтому температура в холодильнике снижается всего до 0+6 °С, а в морозильнике – до -6-24 °С. Немного «подогревшись» в камере, газообразный хладагент движется к конденсатору, и цикл повторяется.

Перекачивает фреон мотор-компрессор, который справедливо называют сердцем холодильника. Он работает по принципу насоса и создает нужное давление в каждой части системы, заставляя хладагент «переносить» тепло из камеры наружу. Находится компрессор между испарителем и конденсатором, в него поступает только газообразный фреон.

Таким образом, главными функциональными элементами каждого холодильника являются:

  • мотор-компрессор;
  • конденсатор;
  • капиллярная трубка, или капилляр (медная труба длиной 1,5–3 м с внутренним проходом 0,6–0,85 мм);
  • испаритель.

Дополнительные элементы системы охлаждения

Кроме перечисленных узлов, в систему входят:

  • Фильтр-осушитель. Выглядит как утолщение между конденсатором и капилляром. Представляет собой медную трубку диаметром до 2 см и длиной 10–15 см, заполненную специальным влагопоглощающим веществом (цеолитом). Фильтр очищает проходящий через него хладагент от влаги и таким образом предотвращает засорение капиллярной трубки. Иначе при резком охлаждении фреона на выходе из капилляра находящаяся в нем вода замерзнет и перекроет просвет.
  • Докипатель. Алюминиевая или медная емкость между испарителем и компрессором. Здесь система охлаждения в очередной раз резко расширяется, заставляя вскипеть весь фреон, который мог остаться в жидком состоянии после прохождения через испаритель. Это необходимо для нормальной работы компрессора (он перекачивает только газ, а при всасывании жидкости может выйти из строя). Поскольку при дополнительном вскипании фреона снова поглощается тепло, докипатель устанавливают внутри холодильника, чаще всего в морозильной камере.

Другие обязательные компоненты прибора

Чтобы система охлаждения работала бесперебойно и с нужной интенсивностью, в конструкцию холодильника включают регулирующие элементы. Так, в агрегате обязательно есть:

  • Терморегулятор. Поддерживает температуру в камере на заданном уровне. Когда она уже достаточно низкая, терморегулятор размыкает электрическую цепь, отключая компрессор от питания. Охлаждение прекращается. Как только температура снова повышается до максимально допустимого значения, терморегулятор замыкает цепь. Компрессор снова начинает работать, охлаждая воздух в камере.
  • Защитно-пусковое реле. Запускает двигатель компрессора при включении холодильника и замыкании цепи терморегулятором. Отключает мотор при перегреве.

Отличия моделей с системой No Frost и без нее

В обычном холодильнике влага, попадающая в камеру, постоянно намерзает на стенках испарителя. Образуется иней, который мешает свободному доступу воздуха и нормальному охлаждению. Хладагент в системе циркулирует, но не может поглощать тепло из камеры из-за толстой снежной шубы. Результат – повышенная температура, которая приводит сразу к двум проблемам:

  1. Продукты портятся гораздо быстрее, чем должны.
  2. На повышенную температуру в камере реагирует терморегулятор. Он не приостанавливает охлаждение, заставляя компрессор работать непрерывно. А это приводит к его быстрому износу. Поэтому холодильники с капельными испарителями необходимо периодически размораживать.
ЭТО ИНТЕРЕСНО:  Где лучше поставить холодильник на маленькой кухне

Система No Frost позволяет избежать намерзания и постоянных разморозок. В нее входят:

  • электрический ТЭН;
  • таймер;
  • вентилятор;
  • система отвода талой воды.

В морозилке холодильника с No Frost испаритель расположен не в виде змеевика под каждой полкой, как обычно, а в виде компактного радиатора. Он может размещаться в любой части камеры. Чтобы устройство эффективно поглощало тепло из всей морозилки, используют вентилятор. Он стоит позади испарителя и постоянно прогоняет воздух через него. Холодный воздушный поток направляется на продукты и охлаждает их.

При этом вся влага из воздуха конденсируется на испарителе, и со временем на нем образуется иней. Но таймер системы No Frost не позволяет шубе стать слишком толстой. В нужный момент он запускает оттаивание: просто включает ТЭН, который размораживает иней. Оттаявшая вода стекает по трубкам в специальный поддон за пределами камеры. Оттуда она испаряется в воздух помещения.

Как правило, в бытовых холодильниках систему No Frost устанавливают только для морозилки. Реже встречаются модели, у которых ею оснащена также холодильная камера. Благодаря работе системы за холодильником нужно меньше ухаживать. Но постоянная циркуляция воздуха и интенсивное выведение влаги наружу приводят к тому, что продукты в камере с No Frost высыхают быстрее, чем в обычной.

Плачущий испаритель

No Frost – не единственное решение проблемы с лишней влагой в камере. Есть совсем простая конструкция – плачущий испаритель. Он используется даже в недорогих современных холодильниках. С точки зрения эффективности и экономии энергии в холодильной камере такая система более выгодна, чем No Frost.

Плачущий испаритель спрятан за задней стенкой камеры. Пока компрессор работает, и происходит охлаждение, стенка становится очень холодной. На ней конденсируется лишняя влага, и образуется тонкий слой инея. Когда температура в камере падает до нужного значения, компрессор отключается, и стенка нагревается, поглощая тепло из воздуха. Иней на ней тает.

Оттаявшая вода стекает капельками по задней стенке камеры (отсюда и название плачущей системы). Внизу для нее предусмотрено специальное дренажное отверстие, через которое конденсат попадает в дренажный шланг. Последний выводит влагу наружу, в специальную широкую емкость (обычно она расположена на корпусе компрессора). Там конденсат испаряется.

Что из этого следует: советы по разумной эксплуатации холодильника

  1. Для нормальной работы прибора необходимо, чтобы конденсатор хорошо охлаждался. Поэтому холодильник нельзя ставить возле нагревательных приборов и под прямые солнечные лучи. Также стоит следить за чистотой конденсатора, ведь толстый слой пыли на «решетке» мешает теплообмену точно так же, как и снежная шуба на испарителе.
  2. Вовремя размораживайте холодильник. Не допускайте образования толстой наледи и инея.
  3. При размораживании не используйте острые предметы, чтобы отколоть лед. Так можно повредить трубки испарителя, что приведет к утечке фреона. Ремонтировать такие повреждения дорого, а иногда вовсе невозможно. Максимум, что можно сделать для ускорения процесса разморозки, – поставить на полки кастрюли или бутылки с теплой водой.
  4. После размораживания и мытья камеры вытрите все ее поверхности насухо и досушите при комнатной температуре еще около двух часов. Затем закройте дверцы, включите пустой холодильник, дождитесь, пока он отработает один цикл и отключится. Только теперь загружайте продукты.
  5. Не включайте надолго функции быстрой заморозки (суперзаморозки) и суперохлаждения. Их кнопки замыкают контакты терморегулятора и не позволяют ему периодически отключать компрессор. В результате мотор перегружается и быстро изнашивается.
  6. Также не стоит устанавливать терморегулятор на максимум. Оптимальный вариант – около середины шкалы. При более интенсивном охлаждении температура в камерах снижается очень незначительно, зато компрессор работает на износ.
  7. У Вас холодильник с плачущим испарителем? Не ставьте продукты вплотную к задней стенке камеры и постоянно следите за состоянием дренажного отверстия, через которое стекает конденсат. Иначе частички пищи забивают дренажный шланг, вода в нем застаивается, и возникает неприятный запах.
  8. По возможности не ставьте на холодильник тяжелых предметов. У современных моделей верхняя крышка изготовлена из пластика и не рассчитана на весовые нагрузки. Если поставить прямо на нее микроволновку или тяжелый комбайн, она просто треснет. В крайнем случае используйте дополнительные опоры для равномерного распределения нагрузки.
  9. Не стелите на холодильник покрывал и клеенок. Они могут съехать назад, накрыть конденсатор и вызвать перегрев.
  10. Следите, чтобы дверцы работающего холодильника были всегда плотно закрыты. Чем больше теплого воздуха попадет в камеру, тем труднее придется компрессору. Кроме того, снаружи влажность несколько выше. Если дверца морозилки закрыта неплотно, на испарителе быстрее образуется наледь.

И главное правило: заподозрив неисправность, не откладывайте ремонт холодильника в долгий ящик. Часто случается так, что изначальная поломка совсем незначительна. Но если ее сразу не устранить, со временем ломается компрессор. А это очень дорогой узел. Поэтому при самых маленьких неполадках звоните мастеру – так Вы продлите срок службы своей техники на годы.

Поделись, если оказалось полезно

Устранение неисправностей у всех марок/брендов

Мы обслуживаем все районы СПб и Ленинградской области

Срочный выезд по следующим видам работ:

Источник: http://remont-holodilnika.spb.ru/kak-ustroen-holodilnik

В холодильнике нет холода

Причины возникновения проблемы с подачей холодахолодильником

Сегодня невозможно в доме обойтись без холодильника. Он является помощником номер один на кухне. Случается так, что холодильник выходит из строя. Люди начинают искать ответы на вопрос, почему в холодильнике нет холода и как это исправить.

Чтобы лучше понимать, откуда же берется холод, рассмотрим его циркуляцию по холодильнику. Для правильной работы холодильника нужны: жидкость и тепло. Для процесса испарения жидкостей нужно тепло. Поэтому компрессоры, которые постоянно гоняют хладагент (по-другому жидкость) по всему контуру холодильника обеспечивают работоспособность холодильника. Годами эти хладагенты могут циркулировать по всему контуру холодильного агрегата, испаряясь и конденсируясь.

Из этого следует, что лучше поняв принцип работы компрессора можно понять, почему нет холода в холодильнике. Высокое давление компрессора толкает весь хладагент в сам конденсатор. Там и осуществляется его переход с газообразного в жидкостное состояние. При этом выделяется количество тепла, которое отдается в окружающую среду. В этом можно просто убедиться, если дотронуться к задней стенке оборудования холодильника.

И уже после того как хладагент преобразовался в жидкость тратится определенное количество энергии. Компрессор поддерживает большое давление. И под этим давлением хладагент в жидкостном состоянии проходит через специальную капиллярную трубку и попадает в сам испаритель. В нем он закипает, и резко охлаждается, после чего быстро растекается под действием силы вентиляции по всем отсекам холодильника. После этого хладагент опять попадает в сам компрессор, и цикл начинается по-новому.

Соответственно, если в холодильнике нет холода, то первичная причина поломки может быть:

 — в компрессоре

 — в конденсаторе

 — в испарителе.

 Рассмотрим другие возможные причины. Причины неисправности также нужно искать:

— в работе терморегулятора;

 — в поломке вентилятора;

 — при утечке хладагента из контура из-за неисправности трубопроводов холодильника.

Способы устранения этих причин и стоимость выполняемых работ

Способы устранения причин поломки холодильника может установить только мастер, который разбирается в ремонте холодильников. Первично, можно предложить заменить терморегулятор и трубопровод холодильника. Также может понадобиться замена хладагента или установка нового вентилятора.

  • Цена замены терморегулятора колеблется от 1500 до 2000 рублей.
  • Установка нового трубопровода может составлять от 2000-3000 рублей.
  • Замена хладагента обойдется от 1500 рублей.
  • Новый вентилятор на холодильник обойдется в от 800 российских рублей.

Наша компания быстро и качественно ремонтирует холодильное оборудование, даже если в холодильнике нет холода. Следует понимать, что ремонт агрегата самостоятельно может привести к дополнительным поломкам.

Даже если причины поломки сильно схожи с описанными выше, то они могут быть правильно диагностированы лишь специалистом. Мы быстро и качественно выполним ремонт холодильника. Наши специалисты регулярно проходят переподготовку, поэтому смогут починить любую модель холодильника.

Заказав специалиста на дом, Вы получаете качественный ремонт холодильника по приемлемой цене.

Несколько советов по уходу за холодильником во избежание таких неисправностей

Во избежание подобных неисправностей следует соблюдать осторожность при передвижении холодильника с места на место. Также не стоит при разморозке холодильника использовать острые предметы. Если у Вас появились дополнительные вопросы по ремонту, просим Вас прямо сейчас позвонить нам. Наши специалисты с радостью Вас проконсультируют, а Вы сможете заказать мастера по ремонту холодильника на дом и оперативно решить свою проблему. Обращайтесь именно к нам!

Источник: https://servis-gold.ru/v-holodilnike-net-holoda

Как проверить компрессор холодильника: работает или нет

Техника перестала включаться и работать? В первую очередь проведите диагностику мотора — эту деталь называют «сердцем». Как проверить компрессор холодильника? Если вы не хотите обращаться в сервисный центр и платить мастеру, мы расскажем, как выполнить работу своими руками.

Принцип работы и устройство мотора

Работа холодильника любой модели («Атлант», «Индезит», «Стинол») в целом одинакова. Основывается на циркуляции хладагента (фреона) в системе. Изначально хладагент — это газ, давление, которое создает компрессор, способствует его попаданию в конденсатор. Там газ охлаждается, превращается в жидкость и перетекает в испаритель. Нагреваясь, жидкость переходит в первичное состояние и повторяет цикл.

Поэтому, если с работой компрессора возникли проблемы, он не будет создавать давление либо его будет недостаточно для нормальной работы.

Степень охлаждения — температуру в камере — регулирует термостат. От него сигнал переходит к пусковому реле мотора, которое запускает весь процесс.

С задней стороны корпуса агрегата расположен мотор-компрессор. Он закреплен в специальном масле и покрыт защитным кожухом, который вы можете видеть на картинке.

Состоит электромотор из пусковой и рабочей обмотки, а также реле.

К корпусу подключается три вывода, один из которых является общим. Два других ведут к пусковой и рабочей обмотке. В последних моделях холодильников устанавливается электросхема, которая может регулировать скорость работы двигателя.

Проверка работоспособности

По каким причинам компрессор перестает работать:

  • Сгорел. Такое случается в результате резкого скачка напряжения и повышенной нагрузки.
  • Сломалось пускозащитное реле.
  • Неисправна проводка.

Случается, что устройство гудит и работает, но холода в камерах нет. Причиной может быть выход газа-фреона. Тогда лучше обратиться к специалисту, который обнаружит протечку и дозаправит систему.

Чтобы узнать, рабочий прибор или нет, воспользуйтесь мультиметром. Как только вы добрались до мотора, нужно убедиться, что корпус не пробивает, иначе он может ударить током. Чаще всего такое случается в старых холодильниках. Приложите щупы мультиметра к корпусу и каждому контакту поочередно. Если на дисплее показывает «∞» — значит, все в порядке. Если на табло появились цифры, обмотка неисправна.

Чтобы выполнить дальнейшую диагностику, нужно демонтировать кожух и открыть доступ к компрессору. Для этого:

  • Отсоедините проводку от контактов.
  • Перекусите трубки мотора, которые соединяют его с другими частями.

Важно! Перед началом работ узнайте, какой тип хладагента используется в вашем холодильнике. Этот газ может быть взрывоопасным.

  • Открутите крепежные болты кожуха и достаньте из корпуса.
  • Отсоедините реле, выкрутив винты.
  • Теперь возьмите прибор для проверки и измеряйте сопротивление между контактами.
  • Приложите щупы к правому и левому выходному контакту. В норме сопротивление составит 30 Ом. Правый верхний покажет 15 Ом, а верхний левый — 20 Ом.

Исходя из модели двигателя и самого холодильника, значения могут отличаться ± 5 Ом.

  • Если показания не совпадают, прибор неисправен. Если где-то показался обрыв — обычный или инверторный мотор подлежит замене или ремонту.

Компрессор выдержал проверку, но техника не работает? Значит, приступайте к дальнейшим испытаниям, но не тестером, а манометром.

  • Вам нужно измерить давление.
  • Подсоедините к нагнетающему штуцеру шланг с отводом.
  • Запустите мотор.
  • Измеряйте давление.
  • Показания при исправном приборе должны быть 6 Атм и повышаться. В таком случае нужно быстро отключить манометр, иначе он сломается.
  • Если давление немного не доходит до 6 Атм, такой двигатель может устанавливаться в холодильниках средних размеров. Показания доходят до 4-5 Атм, значит, мотор может использоваться в однокамерных холодильниках. Компрессор с давлением менее 4 Атм — нерабочий.

Проверка на исправность пройдена, но результата нет. Агрегат все также не включается. В таком случае можно установить работоспособность мотора подключением напрямую, без пускового реле.

Важно! Подобные работы опасны для жизни. Проводить подобную диагностику может либо мастер, либо опытный человек.

Выполните подключение двигателя через шнур по схеме:

В крайнем случае проверить, работает ли мотор, можно через реле. Возможно, ток не доходит до прибора.

  • До этого диагностика проводилась без реле, теперь подключите его к мотору.
  • Выполните запуск.
  • Вооружитесь тестером с клещами.
  • Прижмите клещами сетевой провод, который ведет к прибору.
  • Посмотрите на показатели: при мощности 140 Вт ток должен быть 1,3 А. При мощности 120 В — 1,1–1,2 А.

Дополнительно проведите диагностику пускового реле. Его контакты также замеряются мультиметром.

Теперь вы знаете, как проверить мотор-компрессор своими руками. Для убедительности посмотрите видео о диагностике:

Вам помогла статья?

Да Нет

Источник: https://cosmo-frost.ru/xolodilniki/ekspluataciya-xolodilnika/kak-proverit-kompressor-xolodilnika/

Назначение конденсатора и принцип его работы

Июль 19, 2014

33949 просмотров

Конденсатор (от латинского слова «condensare» — «уплотнять», «сгущать») — это двухполюсное устройство с определённой величиной или переменным значением ёмкости и малой проводимостью, которое способно сосредотачивать, накапливать и отдавать другим элементам электрической цепи заряд электрического тока.

Конденсатор или как его еще называют сокращенно просто «кондер» — это элемент электрической цепи, состоящий в самом простом варианте из двух электродов в форме пластин (или обкладок), которые накапливают противоположные разряды и поэтому они разделены между собой диэлектриком малой толщины по сравнению с размерами самих электропроводящих обкладок.На практике же, все выпускаемые конденсаторы представляют собой многослойные рулоны лент электродов в форме цилиндра или параллелепипеда, разделенных между собой слоями диэлектрика.

Принцип работы конденсатора

По принципу работы он схож с батарейкой только на первый взгляд, но все же он сильно отличается от него по принципу и скорости заряда-разряда, максимальной емкости.

Заряд конденсатора. В момент подключения к источнику питания оказывается больше всего места на электродах, поэтому и ток будет зарядки максимальным, но по мере накопления заряда, ток будет уменьшаться и пропадет полностью после полного заряда.

При зарядке на одной пластине будут собираться отрицательно заряженные частицы- электроны, а на другой – ионы, положительно заряженные частицы. Диэлектрик выступает препятствием для их перескакивания на противоположную сторону конденсатора.

При зарядке растет и напряжение с нуля перед началом зарядки и достигает в самом конце максимума, равного напряжению источника питания.

Разрядка конденсатора. Если после окончания зарядки отключить источник питания и подключить нагрузку R, то он сам превратится в источник тока. При подключении нагрузки образовывается цепь между пластинами.

Отрицательно заряженные электроны двинуться через нагрузку к положительно заряженных ионам на другой пластине по закону притяжения между разноименными зарядами.

В момент подключения нагрузки, начальный ток по закону Ома будет равняться величине напряжения на электродах (равного в конце зарядке конденсатора напряжению источника питания), разделенному на сопротивление нагрузки.
После того как пошел ток, конденсатор начинает постепенно  терять заряд или разряжаться.

Одновременно с этим начнет снижаться величина напряжения, соответственно по закону Ома и ток. В то же время чем выше уровень разряда обкладок, тем ниже будет скорость падения напряжения и силы тока. Процесс завершится после того, как напряжение на электродах конденсатора станет равно нулю.

Время зарядки конденсатора на прямую зависит от величины его емкости. Чем большей она величины, тем дольше будет проходить по цепи большее количество заряда.

Время разрядки зависит от величины подключенной нагрузки. Чем больше подключено сопротивление R, тем меньше будет ток разрядки.

ЭТО ИНТЕРЕСНО:  Что означает Super Freeze на холодильнике

Для чего нужен конденсатор

Конденсаторы широко используются во всех электронных и радиотехнических схемах. Они вместе с транзисторами и резисторами являются основой радиотехники.

Применение конденсаторов в электротехнических устройствах и бытовой технике:

  • Важным свойством конденсатора в цепи переменного тока является его способность выступать в роли емкостного сопротивления (индуктивное у катушки). Если подключить последовательно конденсатор и лампочку к батарейке, то она не будет светиться. Но если подключить к источнику переменного тока, то она загорится. И светиться будет тем ярче, чем выше емкость конденсатора. Благодаря этому свойству они широко применяются в качестве фильтра, который способен довольно успешно подавлять  ВЧ и НЧ помехи, пульсации напряжения и скачки переменного тока.
  • Благодаря способности конденсаторов долгое время накапливать заряд и затем быстро разряжаться в цепи с малым сопротивлением для создания импульса, делает их незаменимыми при производстве фотовспышек, ускорителей электромагнитного типа, лазеров и т. п.
  • Способность конденсатора накапливать и сохранять электрический заряд на продолжительное время, сделало возможным использование его в элементах для сохранения информации. А так же в качестве источника питания для маломощных устройств. Например, пробника электрика, который достаточно вставить в розетку на пару секунд пока не зарядится в нем встроенный конденсатор и затем можно целый день прозванивать цепи с его помощью. Но к сожалению, конденсатор значительно уступает в способности накапливать электроэнергию аккумуляторной батареи из-за токов утечки (саморазряда) и неспособности накопить электроэнергию большой величины.
  • Конденсаторы используются при подключении электродвигателя 380 на 220 Вольт. Он подключается к третьему выводу, и благодаря тому что он сдвигает фазу на 90 градусов на третьем выводе- становится возможным использования трехфазного мотора в однофазной сети 220 Вольт.
  • В промышленности конденсаторные установки применяются для компенсации реактивной энергии.

В следующей статье мы рассмотрим подробно основные характеристики и типы конденсаторов.

Источник: http://jelektro.ru/elektricheskie-terminy/primenenie-naznachenie-kondensatora.html

Конденсатор холодильника: Конденсатор в холодильнике. Что это? – конденсатор, конденсатор холодильника, устройство, принцип действия, классификация, характеристики, холодильник, ремонт, физика, назначение, теплоотдача — agentremonta.ru — Студия жидких обоев Апрель

Конденсатор в холодильнике представляет собой особый теплообменный аппарат, который является важной частью холодильного оборудования. В нем пары хладагента охлаждаются до определенной температуры, после чего, переходят в жидкое состояние.

Чаще всего конденсатор устанавливается на задней стенке устройства. Но существуют и другие вариант расположения этого компонента. От работоспособности конденсатора зависит очень многое, в том числе и работоспособность всего холодильника.

Принцип и особенности работы конденсатора

Холодильный агент нагревается во время работы и перед тем, как он поступает в конденсатор. Но после прохождения данного изделия он охлаждается. Конденсатор является трубопроводом, который обычно обладает видом змеевика.

Именно внутрь его и поступают пары от холодильного агента. На змеевик оказывают влияние некоторые окружающие факторы, например, воздух. В крупных холодильных агрегатах для этих целей используется вода.

Как правило, внешняя поверхность змеевика не может самостоятельно охладиться при помощи воздуха. Благодаря увеличению количества ребер увеличивается поверхность змеевика. Таким образом, процесс охлаждения осуществляется намного быстрее.

Обычно змеевик находится горизонтально, а хладагент подается в верхний виток.

Если холодильник абсолютно новый, то холод в нем генерируется посредствам поглощения тепла во внутренних камерах, а поглощенное тепло при этом выделяется в окружающую атмосферу.

Если холодильник не может нормально выделить тепло в течение определенного времени, то его работоспособность может нарушиться. Таким образом, может произойти накопление тепла, компрессор перегреется, а в конденсаторе повысится уровень давления.

Когда будет расти давление, появится дополнительная нагрузка на компрессор, чего лучше не допускать.

Почти все современные холодильники, например, торговой марки Zanussi обладают продуманным составом компонентов. Там используются надежные конденсаторы. Но даже они при неправильной эксплуатации могут поломаться. Но профессионалы обычно могут устранить проблему весьма быстро.

Основные типы конденсаторов

Конденсатор может находиться на задней части холодильника. Этот вариант является наиболее распространенным среди бытовых моделей. Это конструктивное исполнение обладает большим количеством преимуществ, но и не лишено некоторых недостатков. Обычно холодильники торговой марки Toshiba оснащаются именно таким типом конденсатора.

 Его основным достоинством можно назвать возможность проведения простой очистки. Можно избавиться от загрязнений практически любого типа. Лучше всего чистить конденсатор при помощи обыкновенного пылесоса без специальных насадок. Благодаря этому удается предельно качественно очистить щели конденсатора, которые могут забиваться пылью.

Важно сохранять чистоту не на поверхности решетки, а в щелях. Современные мастера говорят о том, что обычно на конденсаторах находится очень много пыли, которая может приводить к поломкам. Как правило, люди даже не думают о чистке щелей до того момента, пока не произойдет поломка. Иногда эксплуатация может продлиться несколько лет без чистки.

Но рано или поздно устройство поломается, потому что из-за пыли оно может очень сильно перегреваться, в особенности в жаркое время года.

Также лучше не прислонять холодильник слишком быстро к стене, чтобы разогретый воздух от конденсатора мог без препятствий подниматься наверх. Производители, например, компания Bosch обычно предусматривают установку специальных ограничителей, которые не дают возможности устанавливать холодильник в непосредственной близости около стены.

Конденсатор может находиться с боковой части холодильника. Данный вид исполнения также обладает и плюсами, и минусами. Такое расположение конденсатора обладает самой низкой вероятностью возникновения каких-либо нарушений теплообмена по причине скопления грязи и напыли. Конденсатор, который находится в таком месте, обычно прячется за специальную металлическую пластину, которая обеспечивает защиту изделия от коррозионных процессов и окисления.

К недостаткам такого расположения можно отнести не очень большое тепловыделение. А в случае утечки холодильного агента могут возникнуть некоторые неприятности, потому что конденсатор скрыт за решеткой. Чтобы продлить эксплуатационный срок такого оборудования не нужно располагать его боковой стороной вплотную около любого предмета. Надо гарантировать устройству свободную циркуляцию воздуха.

Есть модели, в которых тепло выделяется одновременно с обеих сторон. В этом случае надо поставить устройство так, чтобы с двух сторон был свободный доступ для выхода тепла. Если не соблюдать элементарные правила эксплуатации, может понадобиться ремонт холодильников на дому. Но опытные профессионалы смогут без проблем уладить практически любые проблемы, связанные с конденсаторами любого типа.

Конденсатор может находиться снизу оборудования. К преимуществам такого расположения можно отнести тот факт, что охлаждение осуществляется активным образом. Лучше всего можно охладить любую деталь, если обдувать ее при помощи вентилятора. Но это возможно только тогда, когда поступает не нагретый воздух.

Ключевым недостатком такого конденсатора можно назвать быстрое засорение отверстий, которые используются для всасывания воздуха. Если щели забиваются, то не просто охладить конденсатор. Последствия могут быть самыми печальными.

Чтобы такой холодильник работал без проблем и максимально долго, нужно исключить вероятность засорения отверстий конденсатора.

Конденсаторы могут обладать воздушным охлаждением. Есть модели с пластинчатыми ребрами. Листотрубные модели являются очередным типом такого оборудования. Вне зависимости от конкретного вида конденсатора нужно соблюдать правила эксплуатации холодильника.

Если возникли хотя бы малейшие проблемы с работой, нужно обратиться за помощью к профессионалам. Лучше не усугублять поломку и не запускать ее. Ведь намного проще устранить ее на начальной стадии.

Опытные мастера смогут быстро обнаружить проблему и устранить ее при помощи специального современного оборудования.

Источник: https://agentremonta.ru/raznoe/kondensator-xolodilnika-kondensator-v-xolodilnike-chto-eto-kondensator-kondensator-xolodilnika-ustrojstvo-princip-dejstviya-klassifikaciya-xarakteristiki-xolodilnik-remont-fizika.html

Диагностика пускового конденсатора электродвигателя холодильника

Конденсатор — это элемент, который хранит электрический заряд, а затем выпускает его. Конденсаторы используются для запуска работы электродвигателей на охлаждающей и нагревательной бытовой технике. Конденсатор — важный элемент компрессора холодильника.

Если двигатель не запускается или нестабильно работает, есть повод проверить исправность конденсатора. Следуйте указанным в статье инструкциям, только если имеете опыт обслуживания бытовых электроприборов.

Мы не гарантируем успешного результата диагностики и настоятельно рекомендуем вызвать мастера по ремонту холодильников на дом.

Внимание! Перед диагностикой обязательно снимите остаточный заряд с конденсатора, закоротив его контакты!

Исправный пусковой конденсатор выглядит так:

Начнем диагностику с визуального осмотра. О капитальной проблеме будет говорить деформация конденсатора или следы утечки. Заметили, что конденсатор вспучило — замените его.

Если видимых признаков повреждения конденсатора нет, его нужно проверить. Расскажем о двух методах проверки — с помощью аналогового омметра и с помощью цифрового тестера.

Первый способ поможет понять, способен ли конденсатор хранить, а затем отдавать электрический заряд. Диагностика может быть выполнена с использованием аналогового омметра.

Перед работой с конденсатором вы должны снять потенциально сохраненный заряд, чтобы избежать травм. Сделайте это, замкнув отверткой с изолированной ручкой все контакты конденсатора. Будьте осторожны — не касайтесь металлической части отвертки!

Приступаем к диагностике.

Установите селектор омметра на измерение сопротивления 1000 Ом или выше. При необходимости калибровки прибора замкните щупы друг с другом и выставьте стрелку на ноль. Чтобы проверить конденсатор, прикоснитесь щупом к одной из клемм, вторым щупом коснитесь второго контакта.

Стрелка омметра должна отклониться в сторону нуля Ом и потом вернуться к бесконечному сопротивлению. Поменяйте щупы местами — вы должны увидеть такой же результат. Если стрелка не двигается или остается около нуля, то конденсатор сломан.

Чтобы проверить двойной конденсатор, проведите измерение между общим контактом и каждым из других контактов. Общий контакт обозначается буквой C, другие контакты маркируются надписями FAN, HERM или COM.

Чтобы проверить цепь FAN, один щуп присоедините к общей клемме, а второй — к разъему FAN. Стрелка, как и пре проверки одинарного конденсатора, должна отклониться в сторону нуля и вернуться к бесконечному сопротивлению. Таким же способом проверьте цепи HERM илиCOM.

Короткое замыкание конденсатора компрессора холодильника: как проверить

Продолжаем пользоваться стандартным тестером. Один щуп поместите на контакт, второй — на корпус. Повторите процедуру со вторым контактом. Если прибор покажет сопротивление, налицо короткое замыкание на корпус. Замените конденсатор.

Диагностика конденсатора двигателя по параметру электрической емкости

Пусковой конденсатор холодильника обязательно имеет электрическую емкость. Емкость конденсатора — это тот «объем» энергии, который он способен накопить и пропустить. Проверить исправность элемента можно через измерение электрической емкости в микрофарадах.

Убедитесь, что ваш мультиметр оснащен функцией проверки конденсаторов путем замера мкФ.

На конденсаторах указывается емкость в мкФ — международное обозначение µF или MFD. Найдите этот показатель и выставите соответствующий диапазон на мультиметре.

Разместите щупы на контактах и нажмите кнопку, чтобы увидеть значение в мкФ. Показания должны быть приближены к данным, указанным на маркировке.

Двойные конденсаторы имеют два значения мкФ. Большая величина — показатель для контакта HERM или COM, меньшая — для FAN. Проведите диагностику каждой цепи. Показания должны быть близки к маркировке. Если на мультиметре низкое значение емкости, замените конденсатор.

Успехов в диагностике!

Автор перевода Elremont

Ремонт холодильников / Общие вопросы

Как вызвать мастера

Для вызова мастера по ремонту бытовой техники на дом:

Источник: https://electrastar.ru/remont-holodilnikov/56-diagnostika-puskovogo-kondensatora-elektrodvigatelya-holodilnika.html

Схема подключения и расчёт пускового конденсатора

Выход из строя конденсаторов в цепи компрессора кондиционеров случается не так уж и редко. А зачем вообще нужен конденсатор и для чего он там стоит?

Бытовые кондиционеры небольшой мощности в основном питаются от однофазной сети 220 В. Самые распространённые двигатели которые применяют в кондиционерах такой мощности- асинхронные со вспомогательной обмоткой, их называют двухфазные электродвигатели или конденсаторные.

В таких двигателях две обмотки намотаны так, что их магнитные полюсы расположены под углом 90 град. Эти обмотки отличаются друг от друга количеством витков и номинальными токами, ну соответственно и внутренним сопротивлением. Но при этом они рассчитаны так что при работе они имеют одинаковую мощность.

В цепь одной из этих обмоток, её производители обозначают как стартовую(пусковую), включают рабочий конденсатор, который постоянно находится в цепи. Этот конденсатор ещё называют фазосдвигающим, так как он сдвигает фазу и создаёт круговое вращающееся магнитное поле. Рабочая или основная обмотка подключена напрямую к сети.

Схема подключения пускового и рабочего конденсатора

Рабочий конденсатор постоянно включён в цепь обмотки  через  него протекает ток равный току в рабочей обмотке. Пусковой конденсатор подключается на время запуска компрессора — не более 3 секунд (в современных кондиционерах используется только рабочий конденсатор, пусковой не используется)

Расчёт ёмкости и напряжения рабочего конденсатора

Расчёт сводится к подбору такой емкости, чтобы при номинальной нагрузке было обеспечено круговое магнитное поле, так как при значении ниже или выше номинального магнитное поле изменяет форму на эллиптическое, а это ухудшает рабочие характеристки двигателя и снижает пусковой момент. В инженерных справочниках приведена формула для расчёта ёмкости конденсатора:

Ср= Isinφ/2πf U n2

I и sinφ –ток и сдвиг фаз между напряжением и током в цепи при вращающемся магнтном поле без конденсатора

f- частота переменного тока

U – напряжение питания

n- коэффициент трансформации обмоток , определяется как соотношение витков обмоток с конденсатором и без него.

Напряжение на конденсаторе рассчитывается по формуле

Uc= U√(1+n2)

Uc -рабочее напряжение конденсатора

U — напряжение питания двигателя

n — коэффициент трансформации обмоток

Из формулы видно, что рабочее напряжение фазосдвигающего конденсатора выше напряжения питания двигателя.

В пособиях по расчёту приводят приближённое вычисление – 70-80 мкФ ёмкости конденсатора на 1 кВт мощности электродвигателя, а номинал напряжения конденсатора для сети 220 В обычно ставят — 450 В.

Также параллельно к рабочему конденсатору подключают пусковой конденсатор на время пуска, примерно на три секунды, после чего срабатывает реле и отключает пусковой конденсатор. В настоящее время в кондиционерах схемы с дополнительным пусковым конденсатором не применяют.

В более мощных кондиционерах используют компрессоры с трёхфазными асинхронными двигателями, пусковые и рабочие конденсаторы для таких двигателей не требуются.

Проверка и замена пускового/рабочего конденсатора

Источник: https://masterxoloda.ru/1/shema-podklyucheniya-i-raschyot-puskovogo-kondensatora

Схема подключения компрессора холодильника своими руками

Для начала стоит понять, как работает компрессор и какую функцию он выполняет. Суть работы компрессора во всех холодильниках одинакова. Она состоит в том, чтобы откачивать нагретый хладогент с испарителя и нагнетать его в конденсатор, который находится на задней стенке агрегата. Конденсатор охлаждает и сжижает хладогент; после этого он попадает в испаритель и таким образом охлаждает воздух внутри камеры.

Компрессор

Чтобы подключить компрессор холодильника нужно для начала разобраться с его устройством. Хоть суть работы этой части аппарата одинакова во всех холодильниках, схема и устройство их может разниться. Рассмотрим как он устроен на примере компрессора холодильника Атлант.

Холодильник Атлант

Схема компрессора холодильника Атлант:

Большинство компрессоров современных холодильников поршневые. Как видим на фото он состоят из:

  • кожуха мотора-компрессора;
  • крышки кожуха;
  • самого мотора-компрессора;
  • статора;
  • болта крепления статора;
  • корпуса компрессора;
  • цилиндра;
  • поршня;
  • клапанной плиты;
  • коленчатый вал;
  • кривошпильной шейки вала;
  • коренной шейки вала;
  • обоймы кулисы;
  • ползуна кулисы;
  • нагнетательной трубки;
  • шпильки подвески;
  • пружины подвески;
  • кронштейна подвески;
  • подшипника вала;
  • ротора.

Схема компрессора холодильника Атлант

Принцип работы таков: моторчик приводит в движение коленчатый вал, находящийся в корпусе компрессора. С вращением вала, начинает работать поршень, выполняя возвратно-поступательные движения. Таким образом он откачивает хладогент и посылает его в конденсатор. Далее газ через всасывающий клапан попадает в камеру, который открывается при создании разрежения.

Перед тем как подключать компрессор из холодильника своими руками, разберемся со схемой и работой реле компрессора.

Схема подключения реле компрессора холодильника

Функция работы реле состоит в том, что оно запускает двигатель, то есть мотор, благодаря которому и работает компрессор. Для того, чтобы понять, как его подключить, нужно понять из чего он состоит.

Основные элементы пуско-защитного реле можно изобразить схематически:

  • неподвижные контакты;
  • подвижные контакты;
  • шток сердечника;
  • сердечник;
  • нагреватель биметаллической пластины;
  • контакты теплового реле.

Теперь перейдем непосредственно к схеме подключения компрессора холодильника.

Схема подключения

Для этого нам понадобиться тестер, компрессор и пусковое реле. Выставляем тестер на килоомы или же на омы, и замеряем сопротивление между обмотками компрессора (их будет 3). Измерив сопротивление, смотрим, где получилось наименьшее значение – это и будет рабочей обмоткой. Это значит, что именно ее мы и будем подключать к реле и давать на нее 220 вольт.

В результате выходит, что к нашему реле подключено 4 шнура – 2 от конденсатора, и 2 от вилки. Далее подключаем реле непосредственно к компрессору, и включаем вилку в розетку.

ЭТО ИНТЕРЕСНО:  Что такое супер заморозка

Таким образом можно проверить исправность компрессора. С одной стороны мы подключали реле, с другой – есть 3 трубки. Включив компрессор в розетку, из одной из трубок должен пойти воздух, в другие он должен всасываться.

Схема расклинивания компрессора холодильника

Если же после подключение компрессора он не работает, причиной поломки может быть заклинивание механизма. Избежать ее можно не прибегая к помощи ремонтникам. Для этого нужно сделать расклинивание.

Схема расклинивания компрессора

Нам понадобится только приспособление, которое состоит из двух диодов. Следует подсоединить его к обмоткам электродвигателя компрессора и дать на них кратковременное напряжение в течение 3-5 секунд. Затем повторить процедуру через полминуты.

В результате этих действий происходит расклинивание механизма, потому как знакопеременный вращающий момент, возникший на валу электродвигателя, приводит ротор в вибрацию с частотой до 50 Герц. Таким образом вибрация, передающаяся к заклиненным элементам компрессора расклинивает их.

Выполняя данную процедуру, помните, что диоды должны обладать определенными характеристиками:

  • показатель допустимого обратного напряжения более 400В;
  • показатель допустимого прямого тока не ниже 10 А.

 Подключение компрессора холодильника без конденсатора

В составе холодильника конденсатор играет одну из важных ролей. Он существует для теплообмена – отводит конденсирующиеся пары фреона, которые поступают из компрессора, в окружающую среду. Также КПД холодильника, то есть его эффективность работы, повышается до 20% при наличии конденсатора. Хорошая работа конденсатора – залог хорошей работы холодильника.

Компрессор холодильника подключен к конденсатору и через обратную трубку к испарителю. Если же наблюдается пробой конденсатора, то рабочий ток холодильника будет сильно завышен и это может привести к тому, что сгорит компрессор.

Если же Вы решили подключать компрессор холодильника к сети без конденсатора, это может быть только в том случае, когда этот компрессор используется уже в другом назначении. Например, для того, чтобы сделать насос или же применить его для краскопульта.

Схема подключения компрессора из холодильника, чтобы своими руками приспособить его для других приборов, такая же как и при подключении его в составе холодильника (описано выше).

Источник: http://expertfrost.ru/remont/podklyucheniya-kompressora

Почему нагреваются стенки холодильника или решетка — возможные причины горячего компрессора и способы устранения поломок

Сложно представить домашний быт без такого полезного и необходимого устройства, как рефрижератор. Незначительный простой, даже на несколько часов, может привести к порче продуктов.

Именно поэтому люди часто прислушиваются к работе техники, проверяют её состояние, а при малейших неисправностях стараются выявить причину и попробовать предотвратить более сложную поломку. Сегодня речь пойдёт о такой распространенной проблеме, как холодильник греется.

Норма ли это? В каких случаях можно говорить о неисправности и что предпринять в первую очередь? Для начала не стоит впадать в панику, нужно определиться с тем, что именно в холодильнике греется, в какой его части. От этого многое зависит.

Почему у холодильника горячие боковые стенки

Наступило долгожданное лето – пора отпусков и каникул. Но радостное настроение случайно было испорчено: ненароком потрогав корпус рефрижератора снаружи, было замечено, что он горячий. Не стоит впадать в панику и откладывать все дела на потом, озаботившись вызовом мастера на дом. Если техника работает, а стенки при этом греются – значит, всё ок. Так и должно быть. Но если корпус горячий даже во время отдыха рефрижератора – стоит задуматься, а все ли с незаменимым помощником в порядке?

Холодильный контур

Итак, первым делом, чтобы разобраться в особенностях работы и эксплуатации техники, не лишним будет перечитать инструкцию. Производители там всё очень подробно описывают.

В некоторых моделях холодильника на задней стенке находится специальная решётка. Её называют конденсатором. Она греется, когда двигатель работает, а потом остывает. В некоторых современных моделях можно обнаружить, что такой решётки нет. Она спрятана во внутренние стенки холодильника. Вот и ответ на вопрос, почему боковые стенки горячие.

Решётка спрятана не только для того, чтобы улучшить внешний вид. Подобное конструктивное нововведение оправдано с точки зрения эффективности и долговечности. Все знают, что в морозилке низкая минусовая температура. При этом холодный воздух обычно может выходить в местах прилегания дверцы (особенно, если имеются повреждения уплотнительной резины).

Если на улице стоит жара и в комнатах температура очень высокая, на стенках образовывается конденсат. Со временем это приводит к образованию грибка и плесени на уплотнителе, а также к ржавлению корпуса. При этом трубки конденсатора, которые расположены по бокам, дают возможность испаряться влаге.

В современных холодильниках конденсаторы могут быть расположены внутри

Почему холодильник очень сильно греется:

  • Техника придвинута вплотную к стене. По нормам, между стенкой и мебелью и корпусом рефрижератора должно быть расстояние не менее 7 см.
  • В комнате слишком жарко.
  • Греется уплотнитель морозилки, поэтому дверца прилегает плотно, и, соответственно, холод никуда не уходит.
  • В некоторых устройствах происходит нагрев перемычки между двумя камерами. Это нормально.

Нагрев перегородки между холодильной и морозильной камерой – нормальное явление

Почему сзади греется холодильник (решетка). В каких случаях не обойтись без мастера?

Задняя стенка греется всегда, что обусловлено принципом работы холодильника. Но если решетка не просто горячая, а раскаленная (t выше 45 °C), это повод обеспокоиться.

Конденсатор холодильника

Нужно проверить решетку на наличие загрязнений. Пыль, гарь препятствуют теплоотдаче, что, в свою очередь, снижает эффективность работы холодильника. Следует выполнить очистку. Для этого необходимо отключить устройство от сети, отодвинуть технику от стены и пропылесосить решетку либо удалить налёт щеточкой. При этом нужно соблюдать осторожность, чтобы не повредить хрупкие трубочки конденсатора.

Если это не помогло, следует проверить состояние термодатчика. Быть может, он установлен в максимальное положение, что привело к повышенной нагрузке. В результате повышенной тепловой отдачи температура решетки, естественно, стала выше.

Почистите заднюю решетку холодильника

Не стоит сбрасывать со счетов и температуру окружающей среды. В жаркое лето при t 30 °C и выше происходит затруднение теплообмена, что создает большую нагрузку на компрессор.

Если же все перечисленные выше ситуации не помогли устранить проблему, нужно вызвать мастера для полной диагностики.

Холодильник греет, а не морозит

Нагревается двигатель и в исправных, и в неисправных холодильниках. Тревогу можно не бить до тех пор, пока в камерах поддерживается нужная температура. Если же продукты пропадают, либо, напротив, переморожены, или пищат датчики, срабатывают аварийные индикаторы – стоит обратить внимание и прислушаться к работе рефрижератора.

Если мотор греется, но не морозит, причин может быть несколько:

  • утечка хладона;
  • забилась капиллярная система или фильтр-осушитель;
  • поломка датчика температуры;
  • нарушение тепловой отдачи от стенок в комнатах с высокими значениями влажности и температуры.

Если в контуре начинается стравливание газа, компрессор работает без перерывов, постоянно сжимая воздух. Естественно, в этой ситуации ответ на вопрос, почему очень сильно греется компрессор холодильника, очевиден. При этом мотор горячий настолько, что при прикосновении к нему можно обжечься, своё тепло он отдает в помещение. Испаритель становится теплым.

Вот и ответ на вопрос: почему рефрижератор не морозит, а своей работой способен заменить полноценный радиатор отопления. Конечно, это шутка. Использовать холодильник в таком качестве, по меньшей мере, будет странным. Если нужен обогрев помещения, можно в качестве альтернативы рассмотреть вариант с кондиционером, работающим в режиме охлаждения и обогрева.

Если не запускается мотор – причина в компрессоре. Скорее всего, произошло межвитковое замыкание обмоток или короткое замыкание. В результате этого двигатель греется, но не запускается. При этом слышны щелчки срабатывающего пускозащитного реле. По сути, в таком состоянии холодильник вообще не работает. Потребуется замена узла, что, впрочем, связано с серьезными денежными затратами.

Если засор произошел в капиллярной трубке, греться будет морозильная камера. Признак поломки – нагревается только первое колено конденсаторной решетки, а остальная часть узла при этом холодная.

Сбой электроники или поломка термодатчика могут остановить запуск компрессора. В обоих случаях узел не получит команды на запуск:

  1. поломанный ЭБУ не дает управляющий сигнал;
  2. поломанный термодатчик ошибочно сообщает ЭБУ, что температура в камерах в норме, соответственно, ЭБУ не дает сигнал.

Причины, которые не являются поломками, но приводят к повышению температуры в камерах:

  • В холодильник загружено сразу много продуктов.
  • В камеры поставлены кастрюли с горячими жидкостями.
  • Холодильник давно не размораживали.
  • Дверцы холодильника открываются слишком часто.

Не нужно ставить в холодильник горячие продукты

Конечно, все, что перечислено выше, делать не допускается, если цель – продлить срок службы холодильника.

Источник: https://technosova.ru/dlja-kuhni/holodilnik/greetsja-kompressor/

Реле пускозащитное РКТ

Реле пускозащитные для компрессоров холодильников РКТ-1, РКТ-2, РКТ-3, .. 4, 5, 6 по конструкции существенных отличий не имеют, имеется разница в токе и температуре срабатывания защитной части. Эта запчасть холодильника не ремонтируется.

Схема соединений реле РКТ 2 показана на рисунке:

  • C — на общую компрессора,
  • S — на пусковую,
  • R — на рабочую обмотку компрессора,
  • u1 — биметаллическая пластина,
  • r1 — спираль с высоким сопротивлением,
  • К — рабочий конденсатор.

Принцип работы защитной части реле РКТ

напряжение на рабочую обмотку компрессора поступает через спираль с высоким удельным сопротивлением и затем через контакты биметаллической пластины. При увеличении тока, протекающего через рабочую обмотку компрессора, например при заклинивании или межвитковом замыкании, спираль разогревается, и установленная в непосредственной близости от нее биметаллическая пластина с контактами вследствие нагрева изменяет свою форму и размыкает цепь.

Позисторная часть реле пускозащитного РКТ

Тепловая часть работает следующим образом: в холодном состоянии позистор имеет сопротивление около 30 Ом. При запуске через него и конденсатор на пусковую обмотку компрессора подается напряжение смещения, которое и запускает компрессор. При возникновении каких либо проблем с пусковой обмоткой ток через позистор увеличивается, при нагреве его сопротивление резко увеличивается и компрессор не запускается.

Основные параметры защитных реле РКТ-1РКТ-6:

  • Настройка по температуре срабатывания 120-140 град.С;
  • Настройка по температуре возврата 60-75 град.С;
  • Температура срабатывания 130+-10 град.С;
  • Температура возврата 65 +10-5 град.С;
    • Ток срабатывания (при t=80 град.С):
      • РКТ-1 1,5А;
      • РКТ-2 1,8А;
      • РКТ-3 2,5А;
      • РКТ-4 3,0А;
  • Максимальный ток срабатывания (при t=25 град.С)соответственно: 5; 6,3; 8,0; 11,5 A.
  • Время срабатывания 6-15 сек.

РТ:

  • номинальное сопротивление (при 25 град.С) 33+-8,5 Ом;
  • потребляемая мощность 4,3Вт;
  • Время срабатывания 0,6-2,0 сек.;
  • Время возврата 100 сек;
  • Максимальное напряжение 500 В.

РТ-1:

  • номинальное сопротивление 3,3+-1 Ом;
  • потребляемая мощность 4,3Вт;
  • Время срабатывания 0,6-2,0 сек.;
  • Время возврата 100 сек;
  • Максимальное напряжение 200 В.

Схожая тема:
о применяемости реле РКТ-1.. РКТ-6.

Для разборки:

снять боковую крышку блока РКТ 20 (защелка вверху) для освобождения заземляющего контакта. Далее отцепить изогнутые концы пружины из выемок (сжать концы и приподняв другой край пружины, вытянуть ее на себя).
Снять крышку — она снимется вместе с РКТ. Отверткой поддеть снизу и вытащить РКТ.

Источник: http://www.remkomplex.ru/index.php/rkt-2

Подключение холодильника через конденсатор

Установленный в холодильных машинах компрессор с электрическим приводом обеспечивает циркуляцию хладагента и поддержание требуемой температуры в морозильных камерах. При снижении производительности или появлении проблем с запуском мотора следует проверить состояние цепей, а затем запустить компрессор холодильника без реле, что позволит убедиться в исправности агрегата.

Когда и зачем нужно такое подключение

Компрессор холодильного оборудования представляет собой поршневую машину с приводом от коллекторного электрического двигателя переменного тока. Привод и нагнетательный механизм установлены на раме внутри металлического замкнутого корпуса.

Кожух крепится к корпусу холодильника болтами через опоры с резиновыми демпфирующими вставками. На корпусе установлено специальное пусковое реле, в которое выведены контакты обмоток.

Реле работает совместно с термостатом, обеспечивая поддержание заданной температуры в морозильной камере холодильной установки.

Подсоединение напрямую применяется для проверки состояния обмоток электрического двигателя без учета состояния реле, термостата и соединяющей проводки. Перед началом тестирования следует проверить работоспособность обмоток, а также отсутствие пробоя электрических цепей на корпус компрессора.

Проверка работоспособности компрессора

Проверить мотор можно при помощи тестового прибора, переключенного в режим измерения сопротивления.

С реле демонтируется защитный кожух, из корпуса насосного агрегата выведены 3 провода, которые подсоединены к общему выходу, рабочей и пусковой обмотке.

Щупы прибора поочередно подсоединяются к контактам, сопротивление обмоток зависит от модификации электрического двигателя и даты выпуска. Нормальным считается значение в диапазоне 15-40 Ом, при отклонении параметра на 10 Ом и выше агрегат неисправен.

Для проверки состояния изоляционного слоя тестер подключается к выводам и корпусу компрессора. Рекомендуется прикладывать щуп к участку с удаленным слоем краски. На исправном агрегате цепь будет разомкнутой (измеритель покажет бесконечное сопротивление).

После этого запускаем компрессор, подсоединив провода напрямую к контактам в распределительной коробке. Если прибор покажет конечное значение сопротивления, то имеется пробой или повреждение изоляционного слоя.

Такое изделие запускать запрещено во избежание поражения пользователя электрическим током.

Как подключить и запустить

Допускается запустить компрессор холодильника без пускового реле, подав напряжение на пусковую и рабочую обмотку.

Для коммутации используется медный многожильный кабель, на конце проводов устанавливаются соединительные клеммы, обеспечивающие надежный контакт. Клеммы крепятся к общей точке и выводу рабочей обмотки.

Для улучшения доступа к контактным площадкам допускается временно демонтировать пластиковый лоток для сбора конденсата и талой воды, расположенный на верхней части компрессора.

Подключение компрессора холодильника производится временным подключением пусковой цепи (например, отверткой с изолированной рукояткой). Для повышения безопасности работы в разрыв цепи устанавливается специальная кнопка, активирующая обмотку при нажатии. Если запуск не удается, то заклинили подшипники ротора электромотора или элементы конструкции кривошипного механизма. При заклинивании деталей мотор издает характерное гудение.

После запуска мотора владелец оборудования оставляет холодильник работающим, периодически оценивая состояние морозильной камеры и проверяя температуру теплообменника, расположенного на задней стенке корпуса. Если на поверхности камеры появляется слой льда, а радиатор нагревается, то следует проверять пусковое реле и термостат. При отсутствии нагрева теплообменника и льда необходимо проверить наличие хладагента в магистралях.

Дополнительно рекомендуется проверить состояние поршневой группы. Для тестирования необходимо подсоединить манометр к нагнетательной магистрали; для коммутации используется специальная муфта. После включения мотора описанным выше способом стрелка прибора должна дойти до 6 атмосфер и выше, пониженное давление сигнализирует об износе поршня или зеркала цилиндра, о падении уровня фреона в холодильной установке.

Схема

В схему прямого подключения оборудования входят общая точка и вывод рабочей обмотки, которая имеет сопротивление в пределах 30-40 Ом. При подаче напряжения только на пусковую обмотку мотор работать не будет.

На корпусах электрических двигателей или на реле наносится электрическая схема, которая поможет пользователю разобраться в тонкостях подключения. Рекомендуется подсоединять кабели питания инструментом, предназначенным для проведения электромонтажных работ.

Перед началом коммутации штепсельная вилка извлекается из розетки бытовой сети.

Для чего нужен пусковой конденсатор?

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки — между линией питания и пусковой обмоткой электродвигателя.

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В — 10000 часов
  • 450 В — 5000 часов
  • 500 В — 1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

Источник: https://kalina-2.ru/remont-vaz/podkljuchenie-holodilnika-cherez-kondensator

Понравилась статья? Поделиться с друзьями:
Фабрика холода
Как настроить пульт от кондиционера huayu

Закрыть
Для любых предложений по сайту: [email protected]